Phenotypes of Non-Attached Pseudomonas aeruginosa Aggregates Resemble Surface Attached Biofilm

نویسندگان

  • Morten Alhede
  • Kasper Nørskov Kragh
  • Klaus Qvortrup
  • Marie Allesen-Holm
  • Maria van Gennip
  • Louise D. Christensen
  • Peter Østrup Jensen
  • Anne K. Nielsen
  • Matt Parsek
  • Dan Wozniak
  • Søren Molin
  • Tim Tolker-Nielsen
  • Niels Høiby
  • Michael Givskov
  • Thomas Bjarnsholt
چکیده

For a chronic infection to be established, bacteria must be able to cope with hostile conditions such as low iron levels, oxidative stress, and clearance by the host defense, as well as antibiotic treatment. It is generally accepted that biofilm formation facilitates tolerance to these adverse conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections. In this study we employed scanning electron microscopy, confocal laser scanning microscopy, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently of age, both aggregates and flow-cell biofilm had the same slow growth rate as a stationary phase shaking cultures. Internal structures of the aggregates matrix components and their capacity to survive otherwise lethal treatments with antibiotics (referred to as tolerance) and resistance to phagocytes were also found to be strikingly similar to flow-cell biofilms. Our data indicate that the tolerance of both biofilms and non-attached aggregates towards antibiotics is reversible by physical disruption. We provide evidence that the antibiotic tolerance is likely to be dependent on both the physiological states of the aggregates and particular matrix components. Bacterial surface-attachment and subsequent biofilm formation are considered hallmarks of the capacity of microbes to cause persistent infections. We have observed non-attached aggregates in the lungs of cystic fibrosis patients; otitis media; soft tissue fillers and non-healing wounds, and we propose that aggregated cells exhibit enhanced survival in the hostile host environment, compared with non-aggregated bacterial populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli

Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods:  The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...

متن کامل

Pre-treatment with EDTA-gallium prevents the formation of biofilms on surfaces

Pseudomonas aeruginosa and Streptococcus pyogenes are leading causes of medical device-associated infections. The capacity to establish and maintain these infections is thought to be associated with the ability to form surface-attached biofilms. In the present study, gallium nitrate was used to coat PVC plates and biofilm formation on the plates by Pseudomonas aeruginosa and Streptococcus pyoge...

متن کامل

Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1.

In response to certain environmental signals, bacteria will differentiate from an independent free-living mode of growth and take up an interdependent surface-attached existence. These surface-attached microbial communities are known as biofilms. In flowing systems where nutrients are available, biofilms can develop into elaborate three-dimensional structures. The development of biofilm archite...

متن کامل

CHAPTER FOUR PROTEOME COMPARISON OF Pseudomonas aeruginosa PLANKTONIC, SURFACE INFLUENCED PLANKTONIC AND BIOFILM POPULATIONS BASED UPON COMPOSITE TWO-DIMENSIONAL ELECTROPHORESIS GELS

It has long been recognised that bacteria can switch from planktonic unicellular organisms to sessile multicellular communities known as biofilms (Costerton et al., 1987; 1995). The transition to surface-attached (biofilm) growth is known to result in diverse changes in gene expression, which causes the attaching cells to become phenotypically and metabolically distinct from their planktonic co...

متن کامل

Surface Sensing for Biofilm Formation in Pseudomonas aeruginosa

Aggregating and forming biofilms on biotic or abiotic surfaces are ubiquitous bacterial behaviors under various conditions. In clinical settings, persistent presence of biofilms increases the risks of healthcare-associated infections and imposes huge healthcare and economic burdens. Bacteria within biofilms are protected from external damage and attacks from the host immune system and can excha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011